Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-(2-Benzoyl-5-methoxyphenoxy)benzene-1,2-dicarbonitrile

Talip Kaya Erdem, ${ }^{\text {a }}$ * Sehriman Atalay, ${ }^{\text {a }}$ Nesuhi Akdemir, ${ }^{\text {b }}$ Erbil Ağar ${ }^{\text {b }}$ and Cihan Kantar ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey, and ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey

Correspondence e-mail: tkerdem@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.038$
$w R$ factor $=0.085$
Data-to-parameter ratio $=15.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

The title compound, $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$, contains three benzene rings, pairs of which form dihedral angles of 55.37 (5), 68.47 (4) and $82.82(4)^{\circ}$. The average $\mathrm{C}-\mathrm{O}-\mathrm{C}$ angle is $119.0(1)^{\circ}$.

Comment

The title compound, (I), is a precursor in the synthesis of peripherally tetrasubstituted phthalocyanines (Leznoff \& Lever, 1989-1996). For many years, phthalocyanines have attracted continued interest in various research fields, such as chemical sensors, electrochromism, batteries, photodynamic therapy, semiconductor materials, liquid crystals and nonlinear optics (Leznoff \& Lever, 1989-1996; McKeown, 1998).

(I)

The molecular structure of (I) and a packing diagram are shown in Figs. 1 and 2, respectively. Some selected bond lengths and angles are listed in Table 1. The $\mathrm{C} \equiv \mathrm{N}, \mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{O}$ bond lengths agree with literature values (Ocak et al., 2004; Iskeleli \& Ağar, 2005; Erdem, Atalay, Akdemir, Ağar \& Kantar, 2004; Erdem, Atalay, Akdemir, Ağar \& Özil, 2004; Atalay et al., 2003, 2004).

Compound (I) consists of one benzene rings, A (C1-C6), B (C8-C13) and C (C14-C19). The dihedral angles between the least-squares planes of the rings are $A / B=55.37$ (5), $A / C=$ 68.47 (4) and $B / C=82.82(4)^{\circ}$.

Experimental

2-Hydroxy-4-methoxybenzophenone ($1.58 \mathrm{~g}, \quad 6.92 \mathrm{mmol}$) and 4-nitrophthalonitrile ($1.00 \mathrm{~g}, 5.78 \mathrm{mmol}$) were dissolved in dry dimethylformamide (40 ml) with stirring under N_{2} at 313 K . Dry fine-

Received 1 April 2005 Accepted 18 April 2005 Online 23 April 2005

Figure 1
A view of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids.

Figure 2
A plot of the crystal packing of (I), projected on the $b c$ plane.
powdered potassium carbonate $(1.2 \mathrm{~g}, 8.69 \mathrm{mmol})$ was added in portions ($10 \times 1 \mathrm{mmol}$) every 10 min . The reaction mixture was stirred for 48 h at 313 K and poured into ice-water $(150 \mathrm{~g})$. The product was filtered off and washed with $10 \%(w / w) \mathrm{NaOH}$ solution and water until the filtrate was neutral. Recrystallization from ethanol gave a white product. Yield $0.60 \mathrm{~g}(29.33 \%)$. Single crystals of (I) were obtained from absolute ethanol at room temperature by slow
evaporation (m.p. 393 K). Elemental analysis, calculated for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$: C 74.57, H 3.98, N 7.91\%; found: C 74.56, H 3.96, N 7.88\%.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$
$M_{r}=354.35$
Triclinic, $P \overline{1}$
$a=7.3142$ (9) \AA
$b=9.6929$ (11) \AA
$c=12.9986$ (16) \AA
$\alpha=81.233$ (9) ${ }^{\circ}$
$\beta=83.004$ (10) ${ }^{\circ}$
$\gamma=74.967$ (9) ${ }^{\circ}$
$V=876.34(18) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.343 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 9968

> reflections
$\theta=2.2-27.5^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, light yellow
$0.42 \times 0.26 \times 0.11 \mathrm{~mm}$

Data collection

Stoe IPDS-II diffractometer
ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.963, T_{\text {max }}=0.990$
10703 measured reflections
3726 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.085$
$S=0.97$
3726 reflections
246 parameters
H -atom parameters constrained

2453 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=27.1^{\circ}$
$h=-9 \rightarrow 9$
$k=-12 \rightarrow 12$
$l=-16 \rightarrow 16$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

C7-O1	$1.2149(17)$	C14-O3	$1.3583(15)$
C11-O2	$1.3610(17)$	C20-N1	$1.134(2)$
C13-O3	$1.3996(15)$	C21-N2	$1.1406(18)$
O1-C7-C8	$120.06(14)$	C11-O2-C22	$118.01(12)$
O1-C7-C6	$119.81(13)$	C14-O3-C13	$119.99(10)$

All H atoms were placed in calculated positions and refined using a riding model. C -H distances were set to 0.93 (aromatic H) or $0.96 \AA$ (methyl H). $U_{\text {iso }}(\mathrm{H})$ values were constrained to be 1.2 (1.5 for methyl H) times $U_{\text {eq }}$ of the carrier atom.

Data collection: X-AREA (Stoe \& Cie,2002); cell refinement: $X-A R E A$; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Turkish Government and the University of Ondokuz Mayss for research grant F343.

References

Atalay, Ş., Ağar, A., Akdemir, N. \& Ağar, E. (2003). Acta Cryst. E59, o111101112.

Atalay, Ş., Çoruh, U., Akdemir, N. \& Ağar, E. (2004). Acta Cryst. E60, o303o305.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Erdem, T. K., Atalay, Ş., Akdemir, N., Ağar, E. \& Kantar, C. (2004). Acta Cryst. E60, o1849-o1850.

organic papers

Erdem, T. K., Atalay, Ş., Akdemir, N., Ağar, E. \& Özil, M. (2004). Acta Cryst. E60, o1481-o1482.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Iskeleli, N. O. \& Ağar, A. (2005). Acta Cryst. E61, o158-o159.
Leznoff, C. C. \& Lever, A. B. P. (1989-1996). Phthalocyanines: Properties and Applications, Vols. 1-4. Weinheim and New York: VCH Publishers Inc.
McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Ocak, N., Işık, Ş., Akdemir, N., Kantar, C. \& Ağar, E. (2004). Acta Cryst. E60, o361-o362.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2002). X-AREA (Version 1.118) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

